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GRAPHICAL INTERPRETATION OF THE LOCAL HEAT TRANSFER CORRELA-
TION EQUATION WITH COMBINED FREE AND FORCED CONVECTION

E. L. Rodionov

Inzhenerno-Fizicheskii Zhurnal, Vol. 11, No. 5, pp. 5569-568, 1966

UDC 536.25

An account is given, illustrated by an example, of a graphical
interpretation and of an examination of the correlation equation
for local heat wransfer with combined free and forced convection
in a tube in which hydrodynamic flow stabilization occurs but
thermal stabilization is absent.

The literature presently contains papers in which
correlations are made, to greater or less degree, of
heat transfer data in conditions of free, mixed, and
forced convection.

Watzinger and Johnson [2] have drawn atfention to
the fact that the cooling of a low-viscosity fluid in a
laminar regime by the combined action of free and
forced convection and at large values of the group
Gr - Pr may be described in certain cases by the heat
transfer equation for free convection.

By analytic solution of the system of differential
equations for convective heat transfer, Ostroumov [3]
obtained a solution which includes both free convection
and forced flow as special cases.

.Eckert, Drake, and Meteis [1, 6], in the coordinates
Re—Gr - Pr d/l have generalized results of investiga-
tions for various regimes of forced, mixed, and free con-
vection intubes and channels and have established the
regions of laminar, transitional, andturbulent regimes.

Sparrow, Eichhorn, and Gregg [4] have investigated
analytically the conditions for simultaneous action of
free and forced convection for heat transfer with non-
established velocity fields, putting forward their final

Shevchik [8] obtained a solution for simultaneous
action of free and forced convection in laminar flow
over a vertical flat plate by expansion in series of the
flux and temperature functions in terms of the param-
eter Gr/Re?

From a generalization of the factors acting under
conditions of both free convection and forced flow,
Buznik and Vezlomtsev [5] proposed a generalized
form of a correlation equation for heat transfer in ex-
ternal flow over bodies. Mayatskii, for an internal
problem [7], attempted to represent the physical mod-
el of free convection in such a way as to reduce solu-
tion of the heat transfer problem to an application of
the relations obtained for forced flow in tubes. The
investigations of [5] and [7] have been reduced to com-
putational relations,

Reference [10] described an investigation of local
heat transfer in a tube for the case of combined action
of free and forced laminar flow in conditions of prior
hydrodynamic stabilization. The test data were pro-
cessed in the form of the correlation relation

il oslpe 4 Grpr
[ Na, (1) 1],,“\?&\ = Gr-Pr )

which is shown in Fig. 1. The following characteristic
special features of the experimental curve are evident
from the figure:

solution in the form of approximation relations re- 1. The function Nu (1) — 1 is not monotonic. For a
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Fig. 1. Experimental curves for the function l,r\\T” (,;)?1] -
ol -

=j[Pe 4| for Gr . Pr = 10% (1), 2.8 - 10° (2), 6.5 - 10° (3),

T

1.5 - 108 (4) and 3.4 + 10° (5).
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Table 1
N
Computation Sequence for the Quantity —N—E— m)y—1
0

d
Pe—- 10 | 30 | 50 | 100 | 300 { 500 | 1000 | 1500
/o d\1.29
(Pe——l—) 19.5 80 | 155 | 380 | 1500 | 3020 | 7410 | 12600
50.7- 103
- T 2600 | 634 | 327 | 134 | 33.8 | 16.8 | 6.85 | 4.02
(Pe—;) ’
A
Gr-Pr = 5.105, GrpB| %8 | 239123513 | 1.27 [ 0.63 | 0.96 | 0.15
D
(Gr-Pr)*® = 6= —F 18.4 | 6.14 | 3.68 | 1.84 { 0.61 | 0.37 [ 0.18 | 0.12
== 26.5, Pe —
.
|Gr-Pr — e s
ar - Pr xpo— 1 108 | 467 | 38.8|5.31|0.85|0.44 | 0.20 | 0.13
— 105)0-%- 95,1, ,
Nu
_ 4620 1-\17(“)*1:
25.1 o 2 106 | 0.050.32]0.97|1.48] 1.44| 1.26 ! 1.14
— 184, - ‘
exps — |
Table 2
. Nu
Computed Values of the Function o w)—1
0
-t at Pe—(:
Gr-Pr Uo
o | s | s | w0 | so | s0 | 00 | 1500
1-105 |0 ‘ 0 ‘ 0.002 l 0.07 l 0.51 ‘ 0.61 0.64 l 0.615
2.100 l 0 ‘ 0.005 l 0.086 ‘ 0.51 ‘ 1.16 { 1.17 i 1.08 i 1.00
5.10 ) 0 l 0.051 ’ 0.318 ] 0.967 ] 1.48 ' 1.44 1.26 1.14
109 i 0 10134 ) 0.54 ! 1.92 l 1.65 1.52 l 1.36 1.21
10| 0.0 \ 0.78 ! ] 1.87 | 1.01 1.67 l 1.40 | 1.95
¥
108 } 0.26 1 1.73 l 9.17 ‘ 9.97 ‘ 2.00 l 1.75 \ 1.42 1.95
109 \ 1.17 \ 9.58 ! 2.69 . 9.54 ‘ 2.11 ‘ 1.76 ‘ 1.43 1.96
1010 ‘ 9.48 1 3.90 \ 3.05 ] 2.74 l 210 | L7z ! 1.45 1 1.97
fou ] 3.62 \ 3.53 \ 3.93 \ 2.81 l 9.99 l 182 | 147 \ 1.98
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constant value of Gr - Pr, the quantity (w—1 at

. . cip s d
first increases with increase of Pe — reaches a max-
A

imum, and then begins to drop, tending to zero as
Pei - oo,

{

2. To the left of the maxima the family of curves
with various Gr - Pr values forms a bundle converging

to the origin of coordinates, as Pe lﬁ decreases.
3. With increase of Gr ° Pr the maximum is dis-

placed towards the region of smaller values of Pe ili—

Nu
Nu, w—1
clearly tends to some limit; the distance between
neighboring curves decreases in going to a higher
curve,

Analysis showed that the curves obtained cannot be
described by a power-law correlation equation

4, With increase of Gr - Pr the quantity

Nu =C.Rem.Prn.Grk.G_)p('ﬁ\)'. @)

W /

Reference [10] presents arguments on which an im-
proved correlation equation is based. This equation
has the following general form:

Nu _ c
Nu, (H)_'l - (pequ )m

i
{ { d e ]
{epr' cg/ (Pe l—) |Gr-Pr~(Gr-Pr)mit]"»x}— 1
oo ‘

X

1

[

{
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C3 } 2)
(Gr-Prys
It was established, from the analysis of the equa-
tion performed and by calculation, that the following
relations must hold:

n, =N, - n, and n, = n,.
fl 0 2 3 §

For the experimental conditions ny = 0.29, n,=1.0,
ny = 1,29, g =Ny = 0.25, Cy = 2380, Co = 4620, Cy =
= 21.3, Eq. (2) takes the following computational form:
) — 1 =507.10" / (pei R
Nug [V
)
% ff-\'}) ‘\ g 4620 ] ] :(GPPI‘)H 2%
t LPe " (Gr.Pr— 107" %) '
I

(2a)

The following limits for variation of the similarity
criteria have been investigated experimentally: Re =
= 20-2500; Gr = 7 - 10°~1.2 - 10% Pr = 8,5-2.8; Gr *
- Pr=5-10%3.4 - 108,

Table 1 shows the computational sequence for the
quantity %u_ (wy—1 for the curve with Gr - Pr=>5 - 10°,

N,
However, if, in accordance with the ideas of ref-

erence [9] concerning the definite conservation of prop-
erties of the boundary layer, it is suggested that the
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laws described by Eq. (2) will hold even beyond the
limit of the maximum values of Gr - Pr investigated
experimentally, extrapolation of this equation is pos-
sible.
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Fig. 2. Calculated curved constructed
from Eq. (2a) with Gr- Pr = 1.1-10° (1),
2-10° @), 10%(3), 107 4), 10 (5), 10°
6), 10 (7), and 10! (8); the first bound-
ary curve—from Eq. (7a)—a, the second
boundary curve—from equation (10a}—b
(regimes: I—laminar, II—transitional,
OI-turbulent).

Nu
Nu,

with values of Gr - Pr from 1.3 - 10° to 101,
A correlation equation of type (2) allows us not only

to determine the heat transfer rate in the laminar flow

Table 2 shows calculations of (u) — I for curves

. . R d
region for various relative values of Pe 71 and Gr -

- Pr, but also to define the regions of laminar, transi-
tion, and turbulent flow over the whole range of pos~
sible active conditions of free convection and forced
flow, We shall designate

e ~o. ®)
(Pe T) 1Gr.Pr— (Gr Pryipic 1™

\ /

-

As is known, the quantity exp ¢ — 1 may be expand-
ed in a Taylor series, i.e.,
g 0.‘_’ 0:}
po—l=r oty

For small values of o we may restrict attention to only
the first term of the right side. Hence it follows that

lim{ex { G \d_a |
Pl d \ne + ;‘7
(Pe | 1GrPr — (Gr-Pry Al

1l
J
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d\ ’
( Pe T) [Gr.Pr — (Gr.Pr); ;)%

as { (Pe ;i)"z [Gr-Pr ——(Gr.Pr)init]"“} - o0, (4)

To determine the equation of the boundary curve
between the laminar and transition regimes, as a ref-
erence we made use of a point which has frequently
been defined by investigators. It was assumed that the
laminar regime with Re = 2150, Pr = 3.8, Pe d/I =
= 525, Gr » Pr = 1,5 - 10° will undergo transition, The
ratio (I/d)yeas Was equal to 15,6 [10] in the conditions
of the test.

Table 3

Coordinates of the Boundary Curves

. _ i d Nu . d

Gr-Pr | (Gr-Pr— i0:)0-25 ‘ Pe— Jl [Nuo (v~ *_“ i "C—,lg
1,1.108 10 1805 1.07 8370
2108 17.8 1030 1.26 4700
5.10° 25. 1 720 1.40 3340
108 30.9 584 1.48 2710

107 56.2 321 1.76 1490
108 100 180 2.09 837
10 178 101 2.47 470
1010 316 57.2 2.91 265
ou 562 32.1 3.44 149

As is usual we shall call the curve between the lam-
inar and fransitional regimes the first boundary curve.
For this curve

4620

1 = (0.256.
2150-3.8 —— (15 — 1). 1¢°]0-%5
15.6

(3a)

[

Then exp oy — 1 = 0.30, exp oy — 1)/0y = 0.30/0.256 =
=1.17,

Therefore, for the limiting form of the equation we
may write .
expo, — | = 1.17 g,. (5)

Substitution of the quantity 1.17 oy in place of
exp o3 — 1 brings Eq. (2) into the form

[ l\,m (M}—IJ “% '
Nu, . (Pe—)
{

(Pe fll_\ (Gr-Pr — (Gr.Pr) . 1"
S . 2 B (6)
1.17c, (Gr-Pr)m

If we neglect the quantity (Gr - Pr)ipjtja) (for Gr -
*Pr=1.5 - 10° and (Gr * Pr)jpjtial = 10° the error in
the computations was about 1%), we may reduce the
quantities [Gr.Pr — (Gr.Pr)jpi4 | and (Gr.Pr)™, since nz =
=ny. Then we obtain

Nu ]
- —1 =
[ Ny, ) JJ

Equation (7) is the equation of the boundary curve
between the laminar and transitional regimes through-
out the range of Reynolds numbers characteristic for

€y 1 . 7
1.17¢, <pe£)*

{
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laminar isothermal flow. It has the form of a general-
ized hyperbola, «

For the boundary curve we may calculate the rela~
tive values of Pe d/I and Gr - Pr, Since the value of
oy is constant in this case, by using Eq. (3), we may
write

d C. i/n,
pe 2| = | 2 \ , 8
{L ) { Jz { o, [Gr-Pr—(Gr.pr)mit]';s] ®)
or

ol(Pei) :
L/

The numerical form of Eqs. (7-9) for the condi-
tions of the experiment conducted will be as follows:

C N 2380.21.3
1] =l (72)
Nu, L 1.17.4620
1 9.4
o = 059 (8a)
(Pe—d—) (Pe—d—)
{ . L
pe d] _ 18 000_‘ ’
|, (Gr-Pr— 103)%-%
dd
[GrvPrJ,:(l8000/Pe—l) + 105 (92)

Similarly, we may find the equation of the boundary
curve between the transitional and turbulent regimes,
which we shall conventionally call the second boundary
curve, Taking the values Re = 10 000, Pr = 3.8, Pe d/l =
= 2440, Gr - Pr = 1.5 * 10%, we shall have for these
conditions

4620

(15— 1)-10°]-25

= (0.0552,

G, = ]
2440.
15.6

expo, — 1 = 0.0566.

Thus,
expo, — 1 = 1.0250,,

and the equation of the second boundary curve takes

the form

[ Nu

B m—fl:
NHo RE

For the conditions under which the experiments were
conducted

CiCy 1
’ : 10
1.02502 (Pe_.d_)m‘”: ( )
l

Nu 10.7
[ — (n) — 1] = (10a)
Nu, 2 (Pe _)
i

N

In an analogous way equations (8) and (9) for the
second boundary curve may be written as

[pe -d—] = G ; .]‘l‘”:’ (11)
1], U 0,(Gr.Pr—(Gr.Prj; 1% |

Il

—*ﬁ7‘1%+@nmmP (12)
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Fig. 3. Regimes of local convective heat transfer with simul-
taneous action of free and forced convection (I/d = 15.6): 1,2,
3,4, and 5—curves of constant heat transfer intensity for

N . respectively 1.5, 2, 2.5, 3, and 3,5; a—the first bound-

Nit

ary curve, counstructed from equation (14a); b—the second
boundary curve—from equation (14b). Regimes: I—laminar,

II—transitional, HOI—turbulent,

315



316

For our case
84000

[pei - , (11a)
!, (Gr-Pr — 10%)°-%
; 4
[Gr.Pr]zz( 8400; ) + 10%. (122)
PeT

It should be noted that equation (10), while it de-
scribes analytically the boundary curve between the
transitional and turbulent regime, cannot however tell

us to which values of Cr - Pr the values of [—l\ll\lu—— (w —
Uy
— 1] obtained correspond. Since the turbulent regime

is characterized by the presence of fluctuations, the
fluctuating component leads to a different dependence
of heat transfer on the Reynolds number than in the
laminar regime, Naturally, the equation derived from
experimental data for the laminar regime will under-
state the heat transfer intensity in the turbulent re-
gime,

Table 3 gives calculated relative values of Gr - Pr,

;fu (uw)— 1 and Pe d/I for the first and second bound-~
Uy
ary curves. A graph of the equations Nu w —1=

Uy

= f(Pe ;i, Gr.Pr) , drawn in linear coordinates from

the data of Tables 2 and 3, is shown in Fig, 2. The x
axis on the graph corresponds to forced laminar flow
(Gr - Pr = 10%), and the y axis coincides with the free

convection regime (’Pe% = 0), The graph shows cal-

culated curves of the relation (w)— I, as well as

U
the first and second boundary curves, Since the lami-
nar regime has been investigated experimentally, the
Nu
Up
boundary curve,

curves of

(n) — I are given only below the first

The graph shows that with decrease of Pe % the

transition regime region decreases, i.e,, the laminar
and turbulent regimes appear to draw closer together,
This must evidently be the reason for the absence of
the transitional regime in free convection, it having
proved impossible to observe this with the inherent
accuracy of the experimental investigations.

It is interesting to note that in local heat transfer
the phenomenon of free convection corresponds to the
case when Gr - Pr = «, However, in the actual condi-
tions the produce Gr - Pr is finite. The cause of this
phenomenon is evidently that in free convection there
is always superimposed some degree of forced flow.

For a qualitative comparison of the computed equa-
tion with the generalized graph presented in the mono-
graph of Eckert and Drake [1], the parametric equa-
tion [2] has been recalculated in the form of the relation

Pe=f( Gr.Pr-—?—), (13)

N
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which is is more convenient to construct in logarithmic
coordinates. Transforming and taking logarithms of
Eq. (3) we obtain

! (ng—n;)
lgPe:ilg[—ﬁ(i) n]-«
n, o\ !

_filg[cr.pr_d.—(Gr.pri) ] (14)
g L U inie

The first term on the right side here is a constant co-
efficient. The negative sign ahead of the second term
on the right indicates that the quantity Pe decreases

with increase of Gr-Pril . While Gr.Pr % tends to

(Gr-Pr—(li—) _, the first part of Eq. (14) tends to in-
init
finity.
When the quantity ( Gr.Pr—Lli ) it may be neglected
ini

in éomparison with Gr-Pr % » (14) is an equation of a

straight line in logarithmic coordinates. Under these
conditions the coefficient n3/n, is the tangent of the
angle of slope of the line with respect to the x axis.

In determining the first boundary curve we must
substitute the numerical value ¢y in place of ¢, in de-
termining the second boundary curve the numerical
value ¢, is substituted. In our case Eq. (14) acquires
the form:

for the first boundary curve
g Pe, — 5.152 — 0.251g [Gr-Pr %—6.4. 10° ] . (l4a)
for the second boundary curve

lg Pe, =5.819— 0.25Ig [GrPr—Ll—i——G.—’l. 10 ] < (14b)

Comparison of Egs. (14a) and (14b) shows that the
first and second boundary curves are equidistant in
logarithmic coordinates. Analytically this means that

ilgPe, — g Pe | gr.pr = S lgﬂ == const. (15)
y Op
In our case
0.256
\lg Pe, — ig Pe|gr.pr = 1 = 0.667. 15a
ilgPe, —igPelgrpr = Ig 00552 (15a)

It was established by calculation that the quantity

(Gr-Pri) = 6.4-10* may be neglected, when (Gr .
t init

. Pr(d/l)) = 3.2 - 10*. The deviation from a straight

line relation in the case when Gr-Pri - (Grpri\, ,
Lo ' it

is due to peculiarities in the structure of the baromet-

ric equation, which is constituted in such a way that

the group Gr-Pr is counted from the value (Gr-Pr)ipit,

at which the influence of free convection on heat trans-

fer commences [10].
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The boundary curves and the characteristic heat
transfer regions are shown in Fig., 3. Curves of con-
stant heat transfer intensity are shown in the laminar

region, expressed in terms of the quantity gﬁu—(p),
AN,

these being obtained from Fig, 2. :

Comparison of Fig. 3 with the generalized graph of
Eckert and Drake leads to the conclusion that they are
qualitatively in agreement, This means that the baro-
metric equation (2) allows us to describe analytically
the whole field of possible regimes of convective heat
transfer, this bheing the difference in principle between
(2) and equations of the type (1), which describe heat
transfer by means of a power-law function of similari-
ty criteria.

NOTATION

Nug—local value of Nusseit number in forced laminar flow;
Nu-local value of Nusselt number in superposition of free con-
vection on forced laminar flow; Gr—Grashof number, referred to
the mean fluid temperature: Re—Reynolds number; Pr—Prandtl
number: 1/d—relative distance from the origin to the measurement
section; (p)-=(yf ;;w)g'”l {uf/uqt ' —correction taking into account
the direction of the heat flux; c,, ¢y, €3, 0y, 0y, N, Ng—coONStant coe-
fficients, chosen according to the experimental data; ngexponent
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d. . .
of Pel— in the barometric heat wansfer equation for forced laminar

/

d
flow | Nuy = ¢ PeT|

LR

A

'lu( k3
o O
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